
CS522 - Option Pricing: Building the Lattice
Before we describe how price lattices will be built, let us review some of conclusions

of the previous lecture. We have argued before that stock price returns follow a normal
distribution, while stock prices themselves follow a log-normal distribution. We have also
shown (semi)informally that recombining lattices can be used to generate approximations
of normal distributions. This motivated our study of our one-period binomial model.

0.1 One-Period Binomial Model

There are only two instruments to invest in at time 0: a stock S and a money-market
account (or bond) B. The money-market account has a deterministic continuously com-
pounded return r, yielding a total of Bert at time t, for an investment of B1 at time 0.
The stock price will have one of two possible random values at time t: Su (with probability
p) or Sd (with probability 1 � p). The state in which Su occurs will be called the "up"
state; the state corresponding to Sd is called the "down" state.
In addition, we consider an arbitrary payo¤X at time t. The value of this payo¤ can,

but does not have to, depend on the state of the economy (in fact, the stock price) at
time t. This dependency is shown explicitly by denoting the payo¤ in the "up" state by
Xu, and the payo¤ in the "down" state by Xd.
Our goal is to determine a portfolio of the stock and the money market account so

that we can perfectly reproduce the payo¤X, irrespective of the state of the world at t.
If such a portfolio exists, let us denote by nS the number of units of stock, also, let nB
denote the number of units of the money market account in the respective portfolio. We
will allow for both positive and negative holdings, as well as for fractional units of the
stock and the money market account.
The equation below reproduces the payo¤ of X at time t:�

nsSu + nBBe
rt = Xu

nsSd + nBBe
rt = Xd

Solving it, we get: �
ns =

Xu�Xd
Su�Sd

nB =
1

Bert
(Xu � nsSu)

The time 0 value of the portfolio that reproduces the payout is

V = nsS + nBB = nsS +
1

ert
(Xu � nsSu)

By introducing the quantity q as de�ned below, we can rewrite the value of the initial
portfolio to be:

1We assumed implicitly that the money market account is denominated in units of B. If you assume
that the money market account is denominated in dollars, you can set B = 1.
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q =
Sert � Sd
Su � Sd

=
ert � Sd

S
Su
S
� Sd

S

V = e�rt [qXu + (1� q)Xd]

We have argued last time that we must have

0 < q < 1:

If this is so, then q can be interpreted as a probability; the value of the portfolio that
reproduces X will then be the expectation of the payo¤ under the probability measure
associated with q:

V = e�rtEq[X] = Eq[e�rtX]:

The second equality is justi�ed by the assumption that the interest rate is constant -
and known - in the initial state.
If you review our discussion in the preceding lecture, you will note that we have used

arbitrage considerations to argue that we can not have Sd
S
> ert, or ert > Su

S
. We have

not discussed what happens when ert = Su
S
, or when Sd

S
= ert.

Let us consider the �rst situation, when ert = Su
S
. Intuitively, this relationship means

that the guaranteed (deterministic) return on the money market account is the same as
the return in the "up" state. Since we assumed2 that Su > Sd, this means that the best
return on the stock will equal, but not exceed, the known return on the money market
account. The implied strategy is thus quite intuitive: invest in the money market, and
�nance your investment by selling stocks. This is what we will do: we sell short the stock
at time 0, for S. We invest this amount in the money market account until time t, when
the money market account will have a value of Sert = Su. At this time we also buy back
the stock at its current price Sd, or Su. The payo¤ of the strategy is Sert � Su = 0, if
the "up" state occurs, or Sert � Sd = Su � Sd > 0, if the "down" state occurs. Thus we
never lose money, and we sometimes make money (when the "down" state occurs). The
expected amount of earnings is (1 � p)(Su � Sd) > 0. This is a more general arbitrage
situation than the deterministic situations we have seen before. Still, it is a "money
pump," which would make someone in�nitely rich if it could be repeated inde�nitely.
Given our "no arbitrage" assumption, we can thus eliminate the possibility that ert = Su

S
.

Since we already knew that ert > Su
S
is not possible, we must have that ert < Su

S
.

Using similar reasoning we can show that ert > Sd
S
. We thus get the strict inequality

Sd
S
< ert < Su

S
, which, in turn, implies that 0 < q < 1.

Given these insights, we note that neither the value of the replicating portfolio at time
0, nor the values of ns and nB depend on p, the true probability of the "up" state occuring
at time t. For our purposes, we can disregard p completely, and focus on q.

2Last time we assumed that Sd 6= Su, and that nothing is lost if we assume that Su > Sd. What
happens if Su = Sd.
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Figure 1: One-period binomial model.
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Figure 2: One-period binomial model with the true probabilities replaced by the equivalent
[martingale] probabilities.

3



Figure 3: A multi-period lattice. How do we need to change prices at each step so that
the nodes correspoding to the same number of "up" and "down" states occuring will
recombine?

Under the equivalent probability q the time 0 value of the payo¤X - which must equal
the value of the replicating portfolio (why?) - is the discounted expected time t payo¤
of X. Under the true probability p, no such simple dependency exists. It is thus more
practical for us to work with q.

0.2 Constructing a Multi-Period Lattice

How can we build a recombining lattice that has the right properties?
Knowing the initial price, we would want to �nd a systematic way to change prices as-

sociated with lattice notes so that recombining nodes will correspond naturally to identical
prices.
Remember that we have introduced lattices in order to simulate normal distributions,

which are distributions of returns of the stock price, not of the stock price itself. For
simplicity, let us assume that the one-period return in all "up" states is always the same ,
and it is equal to logU ; similarly, the one-period return in all "down" states is always the
same, and equal to logD. Thus, if a path in the lattice traverses n edges, going "up" k
times, and "down" n�k times, the return on the stock price will be k logU+(n�k) logD,
irrespective of the order in which the "up" and "down" states have been encountered. The
stock price at the end of all such paths will be S(0)UkDn�k, assuring the recombination
of these paths, as we desired.
But what should be the value of U and D? We will choose these so that the expected

return and variance on each time interval correspond to our earlier assumptions. Let us
assume that we divide the time interval from 0 to T into n equal intervals of length �.
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The ith interval will span the time period [i�; (i+ 1)�], 0 � i < n.
We introduce the following de�nitions:

U = exp(��+ �
p
�)

D = exp(��� �
p
�)

In addition, we will assume that p = 1
2
.

We immediately get that the expectation of the stock price return on interval i is

E[r(i�)] = ��

V ar[r(i�)] = �2�

Thus the return on the stock price satis�es the assumptions that we introduced in the
previous lecture on each interval of length �. We note here that our choice for U and D
- as well as for p - is not unique. Other choices are possible.
Let us know consider paths that have k "up" states and n � k "down" states. All

these paths will end in the same state s, in which the price of the stock will be S(T ) =
S(0)UkDn�k, and the n-interval return on the stock price will be rT = k logU + (n �
k) logD. Using our values for U and D, we get:

rT = �k�+ �k
p
�+ �(n� k)�� �(n� k)

p
�

= �n�+ �(2k � n)
p
�

= �T + �(2k � n)
r
T

n

S(T ) = S(0) exp

"
�T + �(2k � n)

r
T

n

#

Let us introduce a binomial variable Xn, whose value is equal to the number of "up"
states that a certain stock price evolution "encounters" from time 0 to time T . We then
get:

rT = �T + �(2Xn � n)
r
T

n

S(T ) = S(0) exp

"
�T + �(2Xn � n)

r
T

n

#

We can easily compute the expectation and the variance of Xn:

E[Xn] =
1

2
n

V ar[Xn] =
1

4
n
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We rewrite the expression for the return to emphasize the return and variance of Xn:

rT = �T + �
p
T
Xn � n

2p
n
4

By the Central Limit Theorem, the quantity Xn�n
2p

n
4

tends to N(0; 1). In the limit, we

thus get that stock price returns on the interval [0; T ] are normally distributed, and that

E[rT ] = �T

V ar[rT ] = �2T

Thus the properties that we assumed for the one-period evolution of the stock price
induce the required properties on the stock price return over the period [0; T ]. Since the
return of the stock price return is normal, the evolution of the stock price is log-normal,
as we wanted it to be.

0.3 Complications

During our discussion of the evolution of stock prices we have disregarded the e¤ect of
dividends. When paid, say, at time td, such dividends induce a discontinuity in the stock
price, since S(t�d ) = S(t

+
d ) + dividend. How does this impact the binomial model?

Let us consider two states, s1 (with stock price S1) and s2 (with stock price S2), in the
lattice that could have been reached in one step (one time interval) from the same previous
state s� (with stock price S�). If we assume that S1 > S2, we have that S1 = S�U , and
S2 = S�D. If states s1 and s2 correspond to the payment of a dividend d, then the after-
dividend prices of the stock will be S+1 = S�U � d, and S+2 = S�D � d. In the absence of
dividends, the "down" state following s1, and the "up" state following s2 would recombine.
Could this also happen in the presence of dividends? If yes, the following equalities must
hold:

S+1 D = S+2 U

(S�U � d)D = (S�D � d)U
dD = dU

It is clear, however, that these equalities can only hold if d = 0, i.e. if there is no
dividend paid in states s1 and s2.3 Thus when discrete dividends are paid, the nodes of
the lattice will not recombine.
It turns out that introducing discrete dividend payments can signi�cantly increase

the resource requirements imposed by a lattice computation. If we have a plain lattice
with n time intervals (i.e. n edges between the root and a leaf node), then the total
number of nodes in the lattice is equal to (n+1)(n+2)

2
. How does this change if you have

3Or if � = 0. This case would imply that there is no uncertainty w.r.t. the �nal values of the stock
prices, as we would have U = D. We have excluded this possibility by assumption.
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Figure 4: Lattice nodes will not recombine after a discrete dividend payment.

k dividend payments? Compute the total number of nodes in a lattice that has n = km
time intervals, and in which a discrete dividend is paid once every m intervals.
Because discrete dividends pose a computational problem, it is often assumed that

dividends are paid continuously.
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